136 research outputs found

    Time for a plant structural economics spectrum

    Get PDF
    We argue that tree and crown structural diversity can and should be integrated in the whole-plant economics spectrum. Ecologists have found that certain functional trait combinations have been more viable than others during evolution, generating a trait trade-off continuum which can be summarized along a few axes of variation, such as the "worldwide leaf economics spectrum" and the "wood economics spectrum." However, for woody plants the crown structural diversity should be included as well in the recently introduced "global spectrum of plant form and function," which now merely focusses on plant height as structural factor. The recent revolution in terrestrial laser scanning (TLS) unlocks the possibility to describe the three dimensional structure of trees quantitatively with unprecedented detail. We demonstrate that based on TLS data, a multidimensional structural trait space can be constructed, which can be decomposed into a few descriptive axes or spectra. We conclude that the time has come to develop a "structural economics spectrum" for woody plants based on structural trait data across the globe. We make suggestions as to what structural features might lie on this spectrum and how these might help improve our understanding of tree form-function relationships

    Soil carbon respiration in tropical forest soils along geomorphic and geochemical gradients

    Get PDF
    Tropical ecosystems and the soils therein have been reported as one of the most important and largest terrestrial carbon (C) pools and are considered important climate regulator. Carbon stabilization mechanisms in these ecosystems are often complex, as these mechanisms crucially rely on the interplay of geology, topography, climate, and biology. Future predictions of the perturbation of the soil carbon pool ultimately depend on our mechanistic understanding of these complex interactions. Using laboratory incubation experiments, we investigated if carbon release from soils through heterotrophic respiration in the African highland forests of the Eastern Congo Basin follows predictable patterns related to topography, soil depth or geochemical soil properties that can be described at the landscape scale and ultimately be used to improve the spatial accuracy of soil C respiration in mechanistic models. In general, soils developed on basalt and granite parent material (mafic and felsic geochemistry of parent material) showed significantly (p <0.05) higher specific respiration than soils developed on sedimentary rocks (mixed geochemistry) with highest rates measured for soils developed on granite. For soils developed on basalt, specific respiration decreased two-fold with soil depth, but not for soils developed on granite or sedimentary rocks. No significant differences in respiration under tropical forest were found in relation to topography for any soil and geochemical background. Using a non-linear, stochastic gradient boosting machine learning approach we show that soil biological, physical and chemical properties can predict the pattern of specific soil respiration (R2=0.41, p<0.05). An assessment of the relative importance of the included predictors for soil respiration resulted in 43 % of the model being driven by geochemistry (pedogenic oxides, nutrient availability), 12 % driven by soil texture and clay mineralogy, 34 % by microbial biomass, C:N, and C:P ratios and 11 % by topographic indices. We conclude that, in order to explain soil C respiration patterns in tropical forests, a complex set of variables need to be considered that differs depending on the local bedrock chemistry. Its effect is likely related to the varying strength of C stabilization with minerals as well as nutrient availability that might drive C input patterns and microbial turnover

    Long‐term recovery of the functional community assembly and carbon pools in an African tropical forest succession

    Get PDF
    On the African continent, the population is expected to expand fourfold in the next century, which will increasingly impact the global carbon cycle and biodiversity conservation. Therefore, it is of vital importance to understand how carbon stocks and community assembly recover after slash-and-burn events in tropical second growth forests. We inventoried a chronosequence of 15 1-ha plots in lowland tropical forest of the central Congo Basin and evaluated changes in aboveground and soil organic carbon stocks and in tree species diversity, functional composition, and community-weighted functional traits with succession. We aimed to track long-term recovery trajectories of species and carbon stocks in secondary forests, comparing 5 to 200 + year old secondary forest with reference primary forest. Along the successional gradient, the functional composition followed a trajectory from resource acquisition to resource conservation, except for nitrogen-related leaf traits. Despite a fast, initial recovery of species diversity and functional composition, there were still important structural and carbon stock differences between old growth secondary and pristine forest, which suggests that a full recovery of secondary forests might take much longer than currently shown. As such, the aboveground carbon stocks of 200 + year old forest were only 57% of those in the pristine reference forest, which suggests a slow recovery of aboveground carbon stocks, although more research is needed to confirm this observation. The results of this study highlight the need for more in-depth studies on forest recovery in Central Africa, to gain insight into the processes that control biodiversity and carbon stock recovery

    In-depth analysis of N2O fluxes in tropical forest soils of the Congo Basin combining isotope and functional gene analysis

    Get PDF
    Primary tropical forests generally exhibit large gaseous nitrogen (N) losses, occurring as nitric oxide (NO), nitrous oxide (N2O) or elemental nitrogen (N2). The release of N2O is of particular concern due to its high global warming potential and destruction of stratospheric ozone. Tropical forest soils are predicted to be among the largest natural sources of N2O; however, despite being the world’s second-largest rainforest, measurements of gaseous N-losses from forest soils of the Congo Basin are scarce. In addition, long-term studies investigating N2O fluxes from different forest ecosystem types (lowland and montane forests) are scarce. In this study we show that fluxes measured in the Congo Basin were lower than fluxes measured in the Neotropics, and in the tropical forests of Australia and South East Asia. In addition, we show that despite different climatic conditions, average annual N2O fluxes in the Congo Basin’s lowland forests (0.97 ± 0.53 kg N ha−1 year−1) were comparable to those in its montane forest (0.88 ± 0.97 kg N ha−1 year−1). Measurements of soil pore air N2O isotope data at multiple depths suggests that a microbial reduction of N2O to N2 within the soil may account for the observed low surface N2O fluxes and low soil pore N2O concentrations. The potential for microbial reduction is corroborated by a significant abundance and expression of the gene nosZ in soil samples from both study sites. Although isotopic and functional gene analyses indicate an enzymatic potential for complete denitrification, combined gaseous N-losses (N2O, N2) are unlikely to account for the missing N-sink in these forests. Other N-losses such as NO, N2 via Feammox or hydrological particulate organic nitrogen export could play an important role in soils of the Congo Basin and should be the focus of future research

    Soil geochemistry – and not topography – as a major driver of carbon allocation, stocks, and dynamics in forests and soils of African tropical montane ecosystems

    Get PDF
    The lack of field-based data in the tropics limits our mechanistic understanding of the drivers of net primary productivity (NPP) and allocation. Specifically, the role of local edaphic factors - such as soil parent material and topography controlling soil fertility as well as water and nutrient fluxes - remains unclear and introduces substantial uncertainty in understanding net ecosystem productivity and carbon (C) stocks. Using a combination of vegetation growth monitoring and soil geochemical properties, we found that soil fertility parameters reflecting the local parent material are the main drivers of NPP and C allocation patterns in tropical montane forests, resulting in significant differences in below- to aboveground biomass components across geochemical (soil) regions. Topography did not constrain the variability in C allocation and NPP. Soil organic C stocks showed no relation to C input in tropical forests. Instead, plant C input seemingly exceeded the maximum potential of these soils to stabilize C. We conclude that, even after many millennia of weathering and the presence of deeply developed soils, above- and belowground C allocation in tropical forests, as well as soil C stocks, vary substantially due to the geochemical properties that soils inherit from parent material

    Contrasting nitrogen fluxes in African tropical forests of the Congo Basin

    Get PDF
    The observation of high losses of bioavailable nitrogen (N) and N richness in tropical forests is paradoxical with an apparent lack of N input. Hence, the current concept asserts that biological nitrogen fixation (BNF) must be a major N input for tropical forests. However, well-characterized N cycles are rare and geographically biased; organic N compounds are often neglected and soil gross N cycling is not well quantified. We conducted comprehensive N input and output measurements in four tropical forest types of the Congo Basin with contrasting biotic (mycorrhizal association) and abiotic (lowland-highland) environments. In 12 standardized setups, we monitored N deposition, throughfall, litterfall, leaching, and export during one hydrological year and completed this empirical N budget with nitrous oxide (N2O) flux measurement campaigns in both wet and dry season and in situ gross soil N transformations using N-15-tracing and numerical modeling. We found that all forests showed a very tight soil N cycle, with gross mineralization to immobilization ratios (M/I) close to 1 and relatively low gross nitrification to mineralization ratios (N/M). This was in line with the observation of dissolved organic nitrogen (DON) dominating N losses for the most abundant, arbuscular mycorrhizal associated, lowland forest type, but in contrast with high losses of dissolved inorganic nitrogen (DIN) in all other forest types. Altogether, our observations show that different forest types in central Africa exhibit N fluxes of contrasting magnitudes and N-species composition. In contrast to many Neotropical forests, our estimated N budgets of central African forests are imbalanced by a higher N input than output, with organic N contributing significantly to the input-output balance. This suggests that important other losses that are unaccounted for (e.g., NOx and N-2 as well as particulate N) might play a major role in the N cycle of mature African tropical forests

    Seasonality, drivers, and isotopic composition of soil CO2 fluxes from tropical forests of the Congo Basin

    Get PDF
    Soil respiration is an important carbon flux and key process determining the net ecosystem production of terrestrial ecosystems. To address the lack of quantification and understanding of seasonality in soil respiration of tropical forests in the Congo Basin, soil CO2 fluxes and potential controlling factors were measured annually in two dominant forest types (lowland and montane) of the Congo Basin over 2 years at varying temporal resolution. Soil CO2 fluxes from the Congo Basin resulted in 3.45 +/- 1.14 and 3.13 +/- 1.22 mu mol CO2 m(-2) s(-1) for lowland and montane forests, respectively. Soil CO2 fluxes in montane forest soils showed a clear seasonality with decreasing flux rates during the dry season. Montane forest soil CO2 fluxes were positively correlated with soil moisture, while CO2 fluxes in the lowland forest were not. Smaller differences of delta C-1(3) values of leaf litter, soil organic carbon (SOC), and soil CO2 indicated that SOC in lowland forests is more decomposed than in montane forests, suggesting that respiration is controlled by C availability rather than environmental factors. In general, C in montane forests was more enriched in C-13 throughout the whole cascade of carbon intake via photosynthesis, litterfall, SOC, and soil CO2 compared to lowland forests, pointing to a more open system. Even though soil CO2 fluxes are similarly high in lowland and montane forests of the Congo Basin, the drivers of them seem to be different, i.e., soil moisture for montane forest and C availability for lowland forest

    Organic matter cycling along geochemical, geomorphic and disturbance gradients in forests and cropland of the African Tropics – Project TropSOC Database Version 1.0

    Get PDF
    The African Tropics are hotspots of modern-day land-use change and are, at the same time, of great relevance for the cycling of carbon (C) and nutrients between plants, soils and the atmosphere. However, the consequences of land conversion on biogeochemical cycles are still largely unknown as they are not studied in a landscape context that defines the geomorphic, geochemically and pedological framework in which biological processes take place. Thus, the response of tropical soils to disturbance by erosion and land conversion is one of the great uncertainties in assessing the carrying capacity of tropical landscapes to grow food for future generations and in predicting greenhouse gas fluxes (GHG) from soils to the atmosphere and, hence, future earth system dynamics. Here, we describe version 1.0 of an open access database created as part of the project &ldquo;Tropical soil organic carbon dynamics along erosional disturbance gradients in relation to variability in soil geochemistry and land use&rdquo; (TropSOC). TropSOC v1.0 contains spatial and temporal explicit data on soil, vegetation, environmental properties and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020 as part of several monitoring and sampling campaigns in the Eastern Congo Basin and the East African Rift Valley System. The results of several laboratory experiments focusing on soil microbial activity, C cycling and C stabilization in soils complement the dataset to deliver one of the first landscape scale datasets to study the linkages and feedbacks between geology, geomorphology and pedogenesis as controls on biogeochemical cycles in a variety of natural and managed systems in the African Tropics. The hierarchical and interdisciplinary structure of the TropSOC database allows for linking a wide range of parameters and observations on soil and vegetation dynamics along with other supporting information that may also be measured at one or more levels of the hierarchy. TropSOC&rsquo;s data marks a significant contribution to improve our understanding of the fate of biogeochemical cycles in dynamic and diverse tropical African (agro-)ecosystems. TropSOC v1.0 can be accessed through the supplementary material provided as part of this manuscript or as a separate download via the websites of the Congo Biogeochemistry observatory and the GFZ data repository where version updates to the database will be provided as the project develops.</p
    • 

    corecore